

SIMULATION TOOL
FOR MULTIPLE IMAGES BASED REAL-TIME SEGMENTATION

Ionut Dinulescu, Alice Predescu, Dorin Popescu

University of Craiova, Faculty of Automation, Computers & Electronics
Department of Automation and Mechatronics

107, Decebal Street, 200440, Craiova, Romania
 dorinp@robotics.ucv.ro

Abstract: The aim of this work was to develop a software framework which allows
building image segmentation algorithms. A graphical simulation software built on top of
this framework allows fast development and debugging each phase of the segmentation
process, starting with image acquisition to final feature extraction. The object oriented
architecture of the framework allows later extension, without the need to modify and re-
test its existing components.

Keywords: image recognition, software framework, segmentation, moving camera.

1. INTRODUCTION

The most popular approaches to describe 3D scenes
are generally based on stereo vision. As an extension
of the stereo vision, researchers have built vision
systems formed by more than two cameras arranged
in different configurations, which have the advantage
to avoid occlusions. The downside of the mentioned
approaches is complexity of the matching problem.

This disadvantage can be solved by using a sequence
of images from a moving camera. These days there
have been a lot of activity on this subject (Chun-Jen
Tsai et al. 1999; Yosuke Ito et al. 2005; Fredrik
Arnell et al. 2005; Jezouin et al. 1990). For instance,
[Chang Y.L et al., 1990] addresses the reconstruction
of 3D lines from a sequences of its 2D projections.
The reconstruction problem is divided in two main
stages: feature representation and estimation. While
the first stage decides what features to use (in this
case the infinite 3D lines) and how to represent them,
the second stage tries to find relationships between
3D estimations and multiple 2D observations. For the
second stage a standard recursive estimator can be
successfully used, such as a Kalman filter (Chehikian
A. et al, 1989; Martinez J.M. et al, 1996) or recursive
least-squares.

As the segmentation process is more accurate, the
complexity of the used algorithms increases, making
them even hard to debug, especially when dealing
with real time constraints. A simulation environment
speeds up the test process of such applications as it
provides 100% repeatability of the algorithm input in
the form of test vectors. In addition simulators can
provide profiling capabilities such as completion
time of critical paths and peak run durations, which
may lead to the detection of execution bottle-necks.
Integration of simulators with a popular development
environment can take advantage of its debugging
features, especially in the case of off-line
simulations, when the real-time issues (e.g. strict
execution deadlines) are ignored.

Existing movement-based segmentation applications
have been built using different test approaches. Some
of them use synthetic images as input, while others
are tested against CAD models of the considered
features. A drawback of the existing test frameworks
is that they are used to debug only some layers of the
final segmentation application.

This paper proposes a software framework and a
simulation environment for development and test of

applications that do segmentation based on sequence
of images.

2. APPLICATION ARHITECTURE

All of the stages of the image processing task can be
simulated in their correct order, starting from
acquisition, image conditioning, and end up with
feature detection and extraction. The general
structure is shown in Fig. 1.The simulator acquires
the sequence of images from a video-camera via an
IP network and uses them to extract image features.

Fig. 1. Overview of the application structure.

The overall architecture of the system conforms to
the Model-View-Controller (MVC) design pattern.
The reasons for this approach has been used are
(Dinulescu I. et al. 2005):
- Clarity of design: the public methods in the model

stand as an API for all the commands available to
manipulate its data and state. By glancing at the
model's public method list, it should be easy to
understand how to control the model's behaviour.

- multiple views: the application can display the
state of the model in a variety of ways, and
create/design them in a scalable, modular way;

- ease of growth: controllers and views can grow as
the model grows; and older versions of the views
and controllers can still be used as long as a
common interface is maintained;

3. THE DEVELOPMENT FRAMEWORK

The framework provides all the necessary
functionality, required by the segmentation process,
which includes separate modules for:
- on-line image acquisition from a video camera;
- image filtering;

- feature extraction;
Additional modules provide routines that implement
specific image operations, such as 2D convolution,
and FFT.

A useful module is the ProfilerClass, a helper class
that allows performance measurement of the
employed algorithms, enabling the developer track
the execution bottle-necks and find sections that need
improvement.

The full object oriented architecture allows further
extensions, e.g. adding new classes and/or
inheritance of the existing ones, without any needed
modifications in the original modules. As the UML
model in Fig.2. shows, the object abstraction
mechanism has been used because it allows easy
addition of new classes, while preserving low-level
compatibility with the existing system (Gamma E. et
al., 1998).

Fig. 2. Part of the UML diagram representing the

filters classes. Each of the filters is a realisation
of the same abstract class.

Modules that do edge detection and feature extraction
have a similar class structure as in Fig.2. The
framework that has been developed acts as the
Controller component within the MVC design pattern
(Dinulescu I. et al. 2005).

Simulation environment

Simulator Framework

Image

set

ImageProcessor::AbstractFilterClass

#ImgIn

AbstractFilterClass()
Transform()

ImageProcessor::CleanFilterClass

CleanFilterClass()
Transform()

ImageProcessor::SobelEdgeExtractorClass

Threshold

SobelEdgeExtractorClass()
Transform()

SetThreshold()

ImageProcessor::CannyEdgeExtractorClas

Threshold

CannyEdgeExtractorClass()
Transform()

SetThreshold()

4. THE SIMULATION TOOL

The simulation software is an interactive application
that assists the user in debugging the segmentation
algorithm. It is built on top of the software
framework described above and provides the
following functionality via a friendly GUI interface:
- acquisition of the images sequence from the video
camera;
- selection of algorithms for each phase of
segmentation;
- starting the simulations;
- watch of debug messages and results.

Fig. 3. The image capture window.

An additional menu allows the user test image
processing algorithms individually, against a single
image file. The simulator supports the most popular
image files formats, such as JPG, BMP and GIF.

4.1 Capture of images sequence

The simulator allows capturing images from a video
camera. The capture window is shown in Fig.3.
The specified number of images is automatically
saved in the selected folder. They will be further used
during the simulation.

The application provides support only for an AXIS
Ethernet camera, but the software can be easily
adapted to other video-camera models. The Motion
JPEG (MJPEG) format that this camera supports
allows downloading a stream of images with only
one HTTP request. The advantage is the elimination
of the overhead introduced by the HTTP request, as
opposed to the simple JPEG format, which requires a

separate request for each image. The downside of
MJPEG, compared to JPEG is that in the first case,
the frame rate is established by the camera, and it
cannot be controlled that easily from the receiving
application. However, for the offline simulation, the
JPEG approach is still a good alternative.

Image acquisition from the AXIS camera starts with
an HTTP request, which contains the IP address of
the target camera. The camera response which
contains the sequence of images is then parsed and
each image is saved in a separate file.

Fig. 4. The filter chain window. The user can

customize the segmentation algorithm, by
choosing the appropriate algorithm for each phase
of the process.

4.2. The simulation

The user can customize the segmentation process, by
selection of the appropriate algorithms for each
phase, as shown in Fig. 4. The source image, can be
whether one of the R, G, B channels, the greyscale or
the binary form of the original image. The greyscale
image is obtained by replacing each of the R,G,B
channels of the current pixel (x,y) with the value
determined by the relation (1):

),(114.0
),(587.0),(299.0),(

yxB
yxGyxRyxI GS

⋅
+⋅+⋅= (1)

where IGS, R, G, B are the greyscale, red, green and
respectively blue values of pixel (x,y).

Image conditioning
After selecting the image source, the algorithms for
pre-filtering and edge detection can be selected,
along with the threshold. If images in the sequence
have already been processed previously, the user has
the option to bypass these two phases and skip to the
selection of features to be extracted.

For the pre-filtering stage, one of the following
image enhancement algorithms can be selected:
- Low-pass filtering
- High-pass filtering
- Histogram equalization

The Butterworth filter has been chosen as the low-
pass filter as it doesn’t introduce the double edge
effect. Its transfer function is shown in equation (2):

 n

D

vuD
vuH 2

0

),(
)12(1

1
),(












−+

= (2)

where D0 is the cutting frequency, and n represents
the order of the filter (Ritter G. et al. 1996).

For high-pass filtering, the transfer function of the
Butterworth filter becomes (3):

n

vuD
D

vuH 2
0

),(
)12(1

1),(









−+

=
 (3)

Feature detection
Detection of features in the image sequence is the last
stage prior to recognition. In the case of real images
feature detection may be not reliable due to
occlusions, so appropriate feature sets need to be
chosen. Hafez W. 1999 proposes the development of
a set of motion-based invariant features.

Currently, lines are the only features supported by the
simulator. New feature extractors can be easily
implemented by inheriting from the AbstractFeature
Extractor class.

For straight line detection, the Hough transform is
used (Cojocaru D. 2002). The Hough transform starts
from edge detection based on local differential
properties of the image (Zhou J. et al 2006). Lines in
(x,y) image space are translated into points in the
Hough (ρ, θ) space, according to the normal
parameterization proposed by Duda et al. 1972:

θθρ sincos yx += (4)

where 0 ≤ θ ≤ π and ρ∈[-ρlim, ρlim]. Peaks in the
parameter space correspond to collinear points in the
image plane.

Hunt 1988 treats the Hough transform as a statistical
signal detection problem by taking noise in
consideration. In this case the Hough transform is
formally described by the relation (5):

NSXH +=),(: θρ (5)

where X and N represent the edge image and noise,
respectively, while S(ρ,θ) is the image that contains
only the line (ρ,θ). The line is detected by using
Bayes statistical approach, described by Chang L. et
al. 1990.

For speeding up the process, the image gradient is
used so the Hough transform is calculated only for
points along the gradient direction (Cojocaru D.
2002; Princen 1990).

For the input image in Fig.5.a, after applying the
Hough transform, the detected straight lines are
shown in Fig.5.b.

a)

b)

Fig.5. a) Source image; b) Straight lines detected

with the Hough transform.

In addition, the simulator provides the option of
tracking the evolution of points in the Hough space,
as the camera moves.

5. USED TECHNOLOGIES

For defining the application architecture, Microsoft
Visio UML editor has been used. Adding new classes
can be done via the same tool, which is able to re-
generate the source code keeping it synchronized
with the existing one.

C# has been chosen as the programming language, as
it is full object-oriented and has support for fast
creation of graphical user interfaces. Although C#
provides basic image processing routines, custom
routines have been developed, for keeping the source
code portable to other platforms.
Currently the Axis 205 Ethernet video camera is
supported, although the software can be adapted to
any other model. The main advantage of an Ethernet
camera is that it can be directly accessed over on IP
network, without the need of a host computer which
may decrease real-time performance.

6. CONCLUSION

Using an offline simulator allows fast debugging of
the image processing algorithm, by restoring the
same context of the image interpretation (the role of
the context in pattern recognition has been well
illustrated by Suentes P. et al. 1992).

This article introduced a complete software
framework and a simulation tool which is currently
being used for development and evaluation of
motion-based image segmentation algorithms. New
algorithms can be easily added without internal
modifications of the application’s architecture.

The software framework is still subject to
improvement. As further development directions,
some new features are being considered, which
include modules for object recognition and on-line
simulation.

REFERENCES

Chang Y.L. and Aggarwal J.K. (1990).
Reconstructing 3D Lines from Sequence of 3D
Projections: Representation and Estimation, 3rd
International Conference On Computer Vision,
pp.101-105.

Chehikian A., Stelmaszyk P., De Paoli S. (1989).
Hardware Evaluation Process for Tracking
Edge-Lines, International Workshop On
Industrial Applications of Machine Intelligence
and Vision, pp. 332-336.

Chun-Jen Tsai and Aggelos K.Katsagellos (1999).
Sequential Construction Of 3D-Based Scene
Description, IEEE International Conference On
Image Processing ICIP, vol.2, pp. 512-514.

Cojocaru D. (2002). Achizitia, prelucrarea si
recunoasterea imaginilor, pp.129-132,
Universitaria, Craiova.

Dinulescu I., Popescu D., Terejanu G. and Marinescu
A. (2005). Web Based Telematic Application
Using Open-Source Technologies, SINTES,
Craiova.

Duda R. and Hart P. 1972. Use of Hough
transformation to detect lines and curves in
pictures, Communications of the ACM, vol. 15,
pp.11-15.

Fredrik Arnell and Lars Petersson (2005). Fast
Object Segmentation from Moving Camera,
Proceedings of Intelligent Vehicles Symposium,
pp. 136-141.

Gamma E., Helm R., Johnson R. and Vlissides J.
(1998). Design Patterns. Elements of Reusable
Object-Oriented Software, pp.100-101, Addison-
Wesley, Baarn, Holland.

Hafez W. (1999). Invariants for motion-based
segmentation, Proceedings of American Control
Conference, Vol.4, pp. 2925-2930.

Hunt D., Nolte L. and Ruedger W. (1998).
Performance of the Hough transform and Its
Relationship to Statistical Detection Theory,
Image and Vision Computing, vol.6, no.2, pp.87-
90.

Jezouin J. and Ayache N. (1990). 3D Structure From
A Monocular Sequence of Images, Proceedings
of 3rd International Conference On Computer
Vision, pp. 441-444.

Yosuke Ito and Hideo Saito (2005). Free-Viewpoint
Image Synthesis From Multiple-View Images
Taken With Uncalibrated Moving Cameras,
IEEE International Conference On Image
Processing ICIP 2005, pp. 29-32.

Martinez M., Zhang Z. and Montano L. (1996).
Segment Based Structure from an Imprecisely
Located Moving Camera, International
Symposium On Computer Vision, pp. 182-187.

Princen J., Illingworth J., and Kittler J. (1990), An
optimizing line finding using a Hough transform
algorithm. Computer Vision, Graphics and
Image Processing, pp. 52:57-77.

Ritter G. and Wilson J. (1996). Handbook of Vision
Algorithms in Image Algebra, pp. 130-132, CRC
Press, Boca Raton, FL, USA.

Suentes P., Fua P., and Hanson A. (1992).
Computational Strategies for Object
Recognition, ACM Computing Surveys, Vol. 24,
pp. 5-62, ACM Press, NY, USA.

Zhou J., Bischof W.F. and Sanchez Arthuro (2006).
Extracting Lines in Noisy Image Using
Directional Information, The 18th International
Conference on Pattern Recognition ICPR’06.,
vol. 2, pp. 215-218

